BRANCH : COMP/IT/ECS

Subject: Programming in C Time: 02.00 Hours
Max. Marks: 60 Date: 15-03-2022
N.B 1. Q.1 is compulsory

2. Attempt any two from the remaining three questions

Q.1. | Attempt all M| BT | CO

a) | What is a flowchart ? Explain the symbols used in flowchart. Draw a flowcharttodisplay |5 | 1 | 1
if a given integer is positive, negative or zero.

A flowchart is a pictorial representation of a sequence of steps to be performed to solve a
given problem. (1 mark)

e —————

Symbol Name Purpose Example Description
@ Start execution sequence
Y Tod Terminal
\“" 7 (' Stop) | Stopexecution sequence
N
- | / Becept? /| ccept value of variable P
£~ . 7 p input /
/| Paralielogram Output
&eiimmiiniimnd 4 N 7
/ PrntP /" printvalue of variable P
Rectangle iocs: X=Y*7 Multiply value of Y and Z, then
storeit in X
i X =Y then follow path
Diamond indicated by Yes; otherwise,
\, follow the path indicated by
No
An entry at the connecting
Circle point represented by * in |
. Guides the |
line path to follow in |
l"" 1 —p | ATOW fow i LT next step

b) | Distinguish between switch-case and if-else ladder with example.
Switch Case if else
Only intege.ror Variables of any
character variables
can be used type can be used
Can be used to All realticnal
compare only operators can be
equality == used(=<, == <=,
1=)
Cannot be used to Can be used to
check for a range check for a range
of values of values
i
4. syntax
5. any example program
c) | What is storage class in C? Explain all storage classes with example.

Storage Classes are used to describe the features of a variable/function. These features
basically include the scope, visibility and life-time which help us to trace the existence of a
particular variable during the runtime of a program.

Storage

Classes

auto

extern

static

register

Storage Default
Place Value
RAM Garbage
Value
RAM Zero
RAM Zero
Register Garbage

Value

Scope Lifetime

Local Within function

Global | Till the end of the main program Maybe declared anywhere

in the program

Local Till the end of the main program, Retains value between

multiple functions call

Local Within the function

d)

Explain following library functions with example :

(i) pow(x,y)
- returns x raised to the power of y i.e. x'.
- math.h
- any valid example

(ii) strrchr(s,c)
- searches for the last occurrence of the character c in the string s
- string.h
- any valid example

(iii) toupper(c)
- converts lowercase letter to uppercase
- ctype.h
- any valid example

(iv) strlen(s)

- returns the length of the string s up to, but not including the terminating null
character.

- string.h

- any valid example

Q.2.

Attempt all

a)

What do you mean by dynamic memory allocation? Explain the different functions used
for it.

An array is a collection of a fixed number of values. Once the size of an array is declared,
you cannot change it. Sometimes the size of the array you declared may be insufficient. To
solve this issue, you can allocate memory manually during run-time. This is known as
dynamic memory allocation in C programming.

Library functions defined in the <stdlib.h> header file used are :
1. malloc()

e Stands for memory allocation

e |t reserves a block of memory of the specified number of bytes.

e |t returns a pointer of void which can be casted into pointers of any form.
e Syntax: ptr = (castType*) malloc(size);

e Example : ptr = (float*) malloc(100 * sizeof(float));

2. calloc()

e Stands for contiguous allocation.

e The malloc() function allocates memory and leaves the memory uninitialized,
whereas the calloc() function allocates memory and initializes all bits to zero.
e Syntax: ptr = (castType*)calloc(n, size);

e Example: ptr = (float*) calloc(25, sizeof(float));
3. realloc()

e To change the size of previously allocated memory.
e Syntax: ptr = realloc(ptr, newSize);

4. free()

e Dynamically allocated memory created with either calloc() or malloc() doesn't get
freed on their own. You must explicitly use free() to release the space.
e Syntax: free(ptr);

b)

Write a program to check if user entered matrix is symmetric matrix or not.

#include <stdio.h>
int main ()

{
int A[10][101, rl1, c¢1, 1, j, flag = 1; // flag set to 1

printf ("Enter rl & cl : ");
scanf ("%d%d", &rl, &cl);

if(rl == cl) //check square matrix
{
// Take a matrix A as input from user
printf ("Enter the elements in matrix: \n");
for (i=0,; i<rl,; i++)
{
for (3=0; j<cl; j++)
{
scanf ("sd", &A[i]l[7]):

}
// Checks whether matrix A is equal to its transpose or not
for (i=0; i<rl; i++)
{
for (§J=0; j<cl; J++)

if(A[L1[3]1 !'= A[31[1i])

}

// If the given matrix is symmetric.
if(flag == 1)
{

printf ("\n Matrix is Symmetric. \n");

printf ("\n Matrix is not Symmetric.");

else
printf ("Not square matrix");

}

return 0;

//OUTPUT

Enter rl & cl : 3
3

Enter the elements in matrix:

1 2 3
2 4 5
3 5 6

Matrix is Symmetric.

Write a program to check if user entered number is magic number. A magic number is
that number whose sum of the digits is when multiplied by the reverse of the same sum
results back the original number. Example: 1729 (1+7+2+9 = 19, reverse = 91, 19*91 =
1729)

#include <stdio.h>

int main ()

{ int num, temp, rev=0, sumOfDigits=0;
printf ("Enter a Number \n");
scanf ("%d", &num) ;

temp = num; //take backup

//Calculating Sum of digits
while (temp > 0)

{
sumOfDigits += temp % 10; //Extract digit & add them

temp = temp / 10;

temp = sumOfDigits;

while (temp > 0)

{
rev = rev*10 + temp $ 10; //Compute reverse of Sum
temp = temp / 10;

if (rev*sumOfDigits == num)
printf ("Magic Number \n");
else
printf ("Not a Magic Number \n");

return 0;

}

//OUTPUT 1
Enter a Number
1729

Magic Number

//OUTPUT 2
Enter a Number
1234

Not a Magic Number

d)

What do you mean by recursive function ? Write a program to find sum of N natural
numbers using recursion.

e Recursion - The process in which a function calls itself directly or indirectly is called
recursion and the corresponding function is called as recursive function.
e Syntax for recursive function:
void recursiveFunc()
{
if(base case)
//something
else
//something
recursiveFunc(); //recursive call

#include <stdio.h>
int sum(int):;
int main ()
{ int number;
printf ("Enter a positive integer :");
scanf ("%$d", &number);
printf ("The sum of first %d numbers is %d.", number,
sum (number)) ;
return 0;

int sum(int n)
{ if (n == 0)
return 0;
else
return n + sum(n - 1);

//OUTPUT
Enter a positive integer :10
The sum of first 10 numbers is 55.

Q.3.

Attempt all

a)

Explain break and continue statements with example.
e Dbreak - terminates the loop in which it is written or transfers control out of switch
block.

while (testExpression) { do {

if (condition to break) {

if (condition to break) { il
tl

break;

}

}
while (testExpression);
»

for (init; testExpression; update) {

if (condition to break) {
break;

}

e continue - skips some lines of code inside the loop and continues with the next

iteration.
do {
while (testExpression) {
if (testExpression) {
if (testExpression) { continue;
continue; }
}
y while (testExpression);

for (init; testExpression; update) {
if (testExpression) {
continue;

}

}

e any valid example

b)

Write a program to display following pattern for N lines :
1
A21
AB321

#include<stdio.h>
int main ()

{ int n/i/j;

printf ("Enter no. of lines = ");
scanf ("%d", &n) ;

for (i=1; i<=n; i++)

{
for (j=1; j<=n-i; Jj++)
{
printf (™ ");
}
for (3=1; j<i; j++)
{
printf ("sc", 64+7);
}
for (j=1i; j>=1; Jj--)
{
printf ("%d",J);
}
printf ("\n");
}

return O;

//OUTPUT

Enter no. of lines = 5
1
A21
AB321
ABC4321
ABCD54321

Write a program to check whether two given strings are anagram of each other or not.
An anagram of a string is another string that contains the same characters, only the
order of characters can be different. For example, “silent” and “listen” are an anagram of
each other.

Method 1 (Use Sorting)
1. Sort both strings
2. Compare the sorted strings

Method 2 (Count characters)
This method assumes that the set of possible characters in both strings is small. In the
following implementation, it is assumed that the characters are stored using 8 bit and
there can be 256 possible characters.
1. Create count arrays of size 256 for both strings. Initialize all values in count arrays
as 0.
2. lterate through every character of both strings and increment the count of
character in the corresponding count arrays.
3. Compare count arrays. If both count arrays are the same, then return true.

Method 3 (count characters using one array)

The above implementation can be further to use only one count array instead of two. We
can increment the value in count array for characters in strl and decrement for characters
in str2. Finally, if all count values are 0, then the two strings are anagram of each other.

Method 4:
Count the frequency of alphabets in both the strings and store them in respective arrays. If
the two arrays are equal, return true. Else, return false.

#include <stdio.h>
#include <string.h>
int check anagram(char a[], char b[])
{
int first[26] = {0}, second[26] = {0}, c=0;
// Calculating frequency of characters of first string

while (a[c] != '"\0")

{
firstl[alcl-'a']l++;
C++;

}

c = 0y

while (b[c] != '"\0")

{ second[b[c]-"a']l++;
ct++;

http://en.wikipedia.org/wiki/Anagram

// Comparing frequency of characters

for (¢ = 0; ¢ < 26; c++)

{ if (first[c] != second[c])
return 0;

}

return 1;

int main ()
{
char a[100], b[1007];
printf ("Enter two strings : \n");
gets(a);
gets(b);

if (check anagram(strlwr(a), strlwr(b)) == 1)
printf ("The strings are anagrams\n");
else
printf ("The strings are not anagrams\n");

return O;

//OUTPUT

Enter two strings

SILENT

listen

The strings are anagrams

d)

Write a program to count the number of vowels in a string using switch-case.

#include <stdio.h>
int main ()

{
char str[50];
int j, vowel=0;

printf ("Enter any string: ");

gets(str);
for (3=0; str[3] != "\0'; J++)
{
if((str[jl>='a' && str[jl<='z") || (str[j]l>="A"
str[jl<='2"))

{
switch(str([j])
{
case 'a
case 'e
case 'i
case 'o':
case 'u
case 'A

&&

case 'E':

case 'I':
case 'O':
case 'U':
vowel++;
}
}
}
printf ("Total number of vowels = %d\n", vowel);
return 0;
}
//OUTPUT
Enter any string: hello
Total number of vowels = 2
Q.4. | Attempt all
Explain reference and dereference operator with example.
Reference operator:
e Address of operator (“&”) is known as referencing operator.
e This operator returns the address of the variable associated with the operator.
e Fore.g., if we write “&x”, it will return the address of the variable “x’.
e Hence, if we have a pointer “p”, which we want to point to a variable x, then we
need to copy the address of the variable “x” in the pointer variable “p”.
e This is implemented by the statement: p = &x;
Dereference operator:
e Value of operator (“*”) is known as dereference operator.
e This operator returns the value stored in the variable pointed by the specified
a) pointer.
e Fore.g., if we write “*p”, it will return the value of the variable pointed by the
pointer “p”.
e Hence, if we want the value of the variable pointed by the pointer “p” to be stored
in a variable “y”, then the expression can be written as: y = *p;
aaa3 fff4
p number
(pointer) (normal variable)
What is FILE ? Explain the different file opening modes.
e Afileis a collection of bytes which is stored on a secondary storage device like a
b) hard disk to store data permanently.

e FILE is a predefined structure which is defined in the header file <stdio.h>.

Mode Description

It opens an existing file for reading only.

w It opens a new file for writing. If the filename does not exist it will be created and if the file
already exists then its contents are deleted.

It appends the existing file. If the filename does not exist it will be created.

It opens an existing file for reading and writing. It indicates that the file is to be read before
writing.

w+" | It opens a new file for reading and writing. If a file with the current filename exists then it is
destroyed and a new file name is created.

“a+" | It opens an existing file for reading and appending. Its stream is positioned at the end of the file
content.

c)

Write a program to store details for 'N' BankCustomer(account no., name, balance) and
display list of customers whose balance is less than 5000.

#include<stdio.h>
struct BankCustomer

{
char name[20];
long acc_no;
double balance;
b

int main ()

{ struct BankCustomer c[107];
int n,i;
double bal;

printf ("Enter the number of customers : ");
scanf ("%d", &n);

for (i=0; i<n; 1++)

{ printf ("\nEnter the customer's name : ");
fflush (stdin) ;
gets(c[i] .name) ;

printf ("Enter account no. : ");
scanf ("$1d", &c[i].acc_no);

printf ("Enter balance : ");
scanf ("$1f", &bal);
cl[i] .balance = bal;

printf ("\nName \t Account No. \t Balance\n");
printf("--——-----"----"-""- \n");

for (i=0; i<=n-1; 1i++)
{ if(c[i] .balance < 5000)
printf (" %$s\t %1d\t %.21f \n", c[i].name,
c[i].acc_no, cl[i].balance);

}

\

return 0;

/* OUTPUT

Enter the number of customers : 3
Enter the customer's name : abc
Enter account no. : 122201

Enter balance : 2340

Enter the customer's name : xyz
Enter account no. : 122203
Enter balance : 5000

Enter the customer's name : pgr
Enter account no. : 122202
Enter balance : 1000

Name Account No. Balance
abc 122201 2340.00
pgr 122202 1000.00

*/

d)

Write a program to remove the duplicate elements from an integer array. For ex: A =
{2,1,3,2,1,4,4}, after removing duplicates, A={2,1,3,4}.

#include<stdio.h>
int main ()

{

int a[50],1,3,k,size;

printf ("Enter size of the array\n");
scanf ("%d", &size);

printf ("Enter Elements of the array:\n");
for (i=0;i<size;i++)
{

scanf ("%d", &al[i]);

printf ("Entered elements are: \n");
for (i=0;i<size;i++)
{

printf ("sd ",ali]);

for (i=0;i<size;i++)
{
for(j = i+1l; j < size; Jj++)

{

if(ali] == aljl)

{
for(k = j; k <size; k++)
{
alk] = alk+1];
}
5--;
size--;
}

printf ("\nAfter deleting the duplicate element the Array
is: \n");
for (i=0;1i<size;i++)

{
printf ("%d ",al[i]l):;
}
}
//OUTPUT

Enter size of the array
10
Enter Elements of the array:

o > O 00 01T DN oo o

Entered elements are:

1 582581546@6

After deleting the duplicate element the Array is:
1582146

CO1: Understand the basic terminology used in computer programming.

CO02: Use different data types, operators and keywords to write programs.

CO03: Able to logically code using control statements and loops.

CO4: Use the concepts of arrays, strings, functions and Structures to structure complex programs.
CO5: Use of pointers to access different user defined data types like arrays, Strings and Structures.
CO6: Use different data structures and open/create/update basic data files.

BT Levels: - 1 Remembering ,2 Understanding, 3 Applying,4 Analyzing, 5 Evaluating, 6 Creating.
M-Marks, BT- Bloom's Taxonomy, CO-Course Outcomes.

